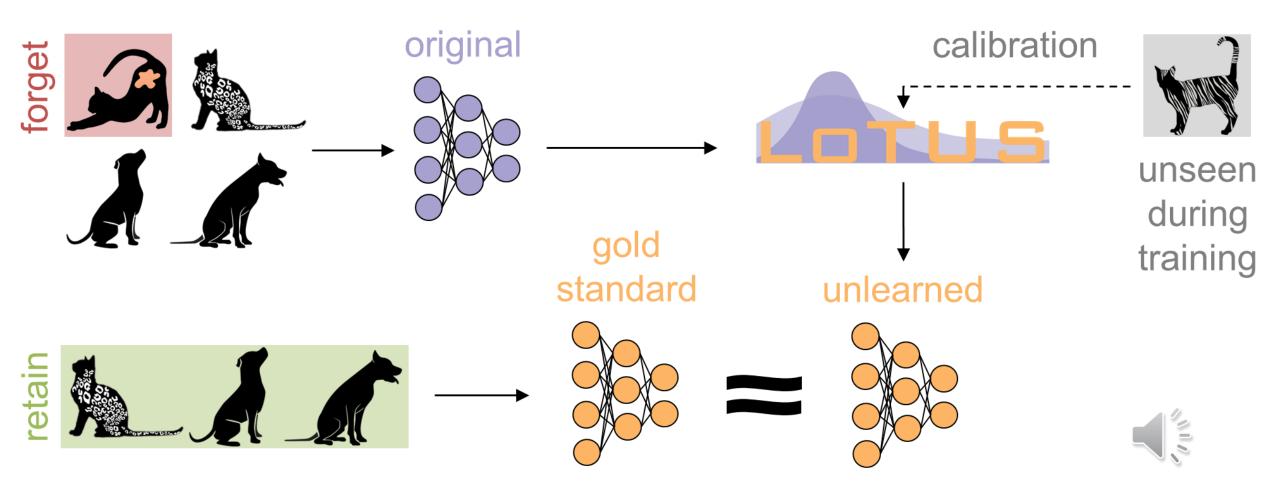


LoTUS: Large-Scale Machine Unlearning with a Taste of Uncertainty

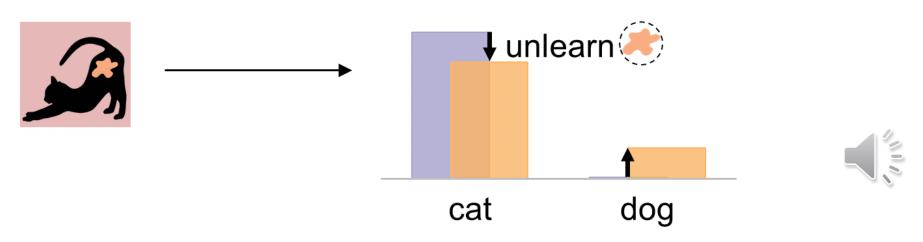
Christoforos N. Spartalis^{1,2} Theodoros Semertzidis² Efstratios Gavves^{1,3} Petros Daras²



Machine Unlearning

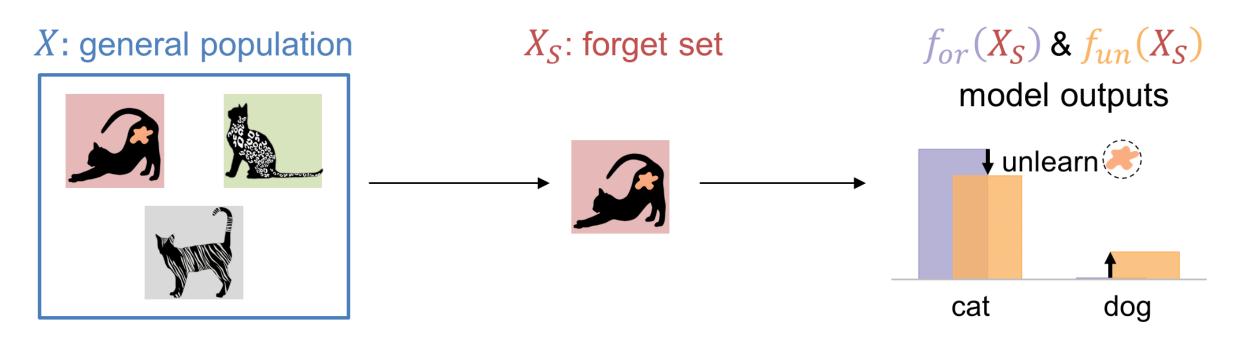
Entropy-based Unlearning

Why Unlearning?


- DNNs memorize sample-specific information
- Privacy leakage in overconfident predictions
- Unlearning by increasing model's uncertainty

X_S : forget set

How much Uncertainty?


- LoTUS: 1st method to answer that
- Better balance between forgetting-retention
- Information-Theoretic Framework

 $f_{or}(X_S) \& f_{un}(X_S)$ model outputs

Information-Theoretic Framework

 $I(f_{or}(X_S); X_S)$

total info captured by the model for the forget set

 $I(f_{or}(X_{S}); X) +$

global info from general features in the training set (e.g., body shape of cats) $I(f_{or}(X_S); X_S \mid X)$

additional subset-specific info from unique features () memorized by the model

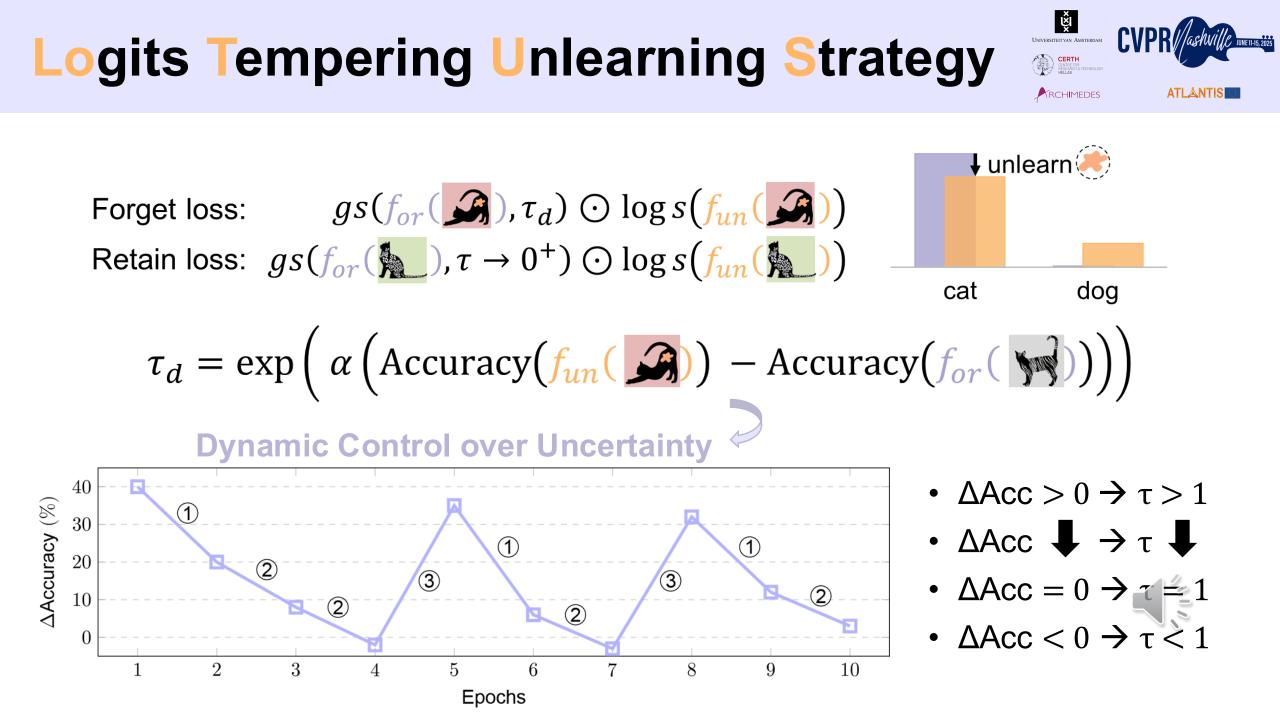
Objective

 $I(f_{or}(X_S); X_S) =$

total info captured by the model for the forget set

 $I(f_{or}(X_{S}); X) +$

global info from general features in the training set (e.g., body shape of cats)

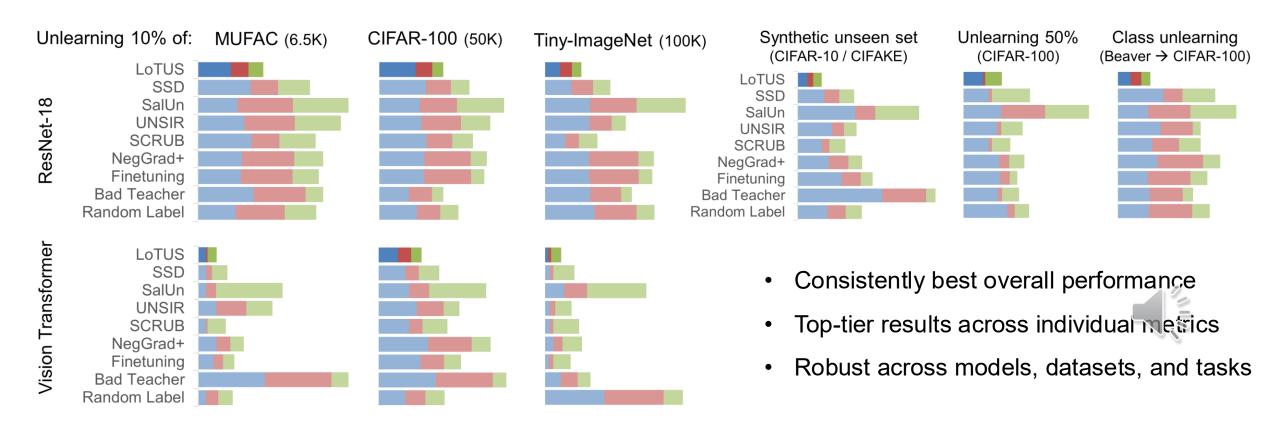

$$I(f_{or}(X_S); X_S \mid X)$$

additional subset-specific info from unique features () memorized by the model

Objective
SectionForget: $I(f_{un}(X_S); X_S | X) \triangleq 0$
Retain: $I(f_{un}(X_S); X) \triangleq I(f_{or}(X_S); X)$ $I(f_{un}(X_S); X_S) \triangleq I(f_{or}(X_S); X)$

Unseen set as a "perfectly unlearned" set : $I(f_{or}(X_S); X_S) = I(f_{or}(X_S); X)$

$$I(f_{un}(\boldsymbol{\mathcal{G}});\boldsymbol{\mathcal{G}}) = I(f_{or}(\boldsymbol{\mathcal{G}});\boldsymbol{\mathcal{G}}) \Rightarrow H(\boldsymbol{\mathcal{G}}|f_{un}(\boldsymbol{\mathcal{G}})) = H(\boldsymbol{\mathcal{G}}|f_{or}(\boldsymbol{\mathcal{G}}))$$
$$Accuracy(f_{un}(\boldsymbol{\mathcal{G}})) = Accuracy(f_{or}(\boldsymbol{\mathcal{G}}))$$



Average Gap (\downarrow) : Balance between forgetting and retention

JSD (\downarrow): Unlearning efficacy & Resilience to the Streisand Effect

Runtime Estimation (\downarrow) : Unlearning efficiency

Large-Scale Real-World Benchmarking

The **gold standard** model is **not available**

- Pre-trained ViT
- ImageNet-1K (1.2M)
- Limited data access

Method	$ RF\text{-}JSD \times 1e4 (\downarrow) $	Time (\downarrow)	Retain Acc.	MIA Acc.
Original	1.22 _{±0.01}	(pre-trained)	$0.94_{\pm 0.00}$	$0.71_{\pm 0.00}$
Finetuning	$2.22_{\pm 0.02}$	$16.24_{\pm 0.03}$	$0.97_{\pm 0.00}$	$0.78_{\pm0.00}$
NegGrad+	2.17 _{±0.02}	$18.10_{\pm 0.03}$	$0.97_{\pm 0.00}$	$0.80_{\pm0.00}$
Rnd Labeling	1.80 _{±0.09}	$19.37_{\pm 0.03}$	$0.95_{\pm 0.01}$	$0.74_{\pm 0.01}$
Bad Teacher	3.16 _{±3.25}	11.66 _{±0.03}	$0.77_{\pm 0.21}$	$0.52_{\pm0.18}$
SCRUB	1.24 _{±0.01}	$24.49_{\pm 0.03}$	$0.94_{\pm 0.00}$	$0.71_{\pm 0.00}$
SSD	1.23 _{±0.01}	$22.61_{\pm 0.10}$	$0.94_{\pm 0.00}$	$0.71_{\pm 0.00}$
UNSIR	$2.54_{\pm 0.03}$	$33.12_{\pm 0.03}$	$0.99_{\pm 0.00}$	$0.77_{\pm 0.01}$
SalUn	1.83 _{±0.03}	$59.27_{\pm 0.37}$	$0.95_{\pm 0.00}$	$0.74_{\pm 0.01}$
LoTUS	1.11 _{±0.01}	$10.72_{\pm 0.01}$	$0.94_{\pm 0.00}$	$0.61_{\pm0.01}$

Novel Metric: Retrain-Free Jensen-Shannon Divergence

Contributions

- ✓ LoTUS: Scalable and effective entropybased unlearning strategy
- ✓ RF-JSD: Evaluation metric for large-scale and real-world benchmarking

Thank you for your attention and interest!

Scan for: code, paper, video, blog, and slides

Highly modular code for benchmarking machine unlearning in classification tasks: <u>github.com/cspartalis/LoTUS</u>